Red-Black tree is a self-balancing binary search tree in which each node contains an extra bit for denoting the color of the node, either red or black.
A red-black tree satisfies the following properties:
- Red/Black Property: Every node is colored, either red or black.
 - Root Property: The root is black.
 - Leaf Property: Every leaf (NIL) is black.
 - Red Property: If a red node has children then, the children are always black.
 - Depth Property: For each node, any simple path from this node to any of its descendant leaf has the same black-depth (the number of black nodes).
 
An example of a red-black tree is:
	Each node has the following attributes:
- color
 - key
 - leftChild
 - rightChild
 - parent (except root node)
 
How the red-black tree maintains the property of self-balancing?
The red-black color is meant for balancing the tree.
The limitations put on the node colors ensure that any simple path from the root to a leaf is not more than twice as long as any other such path. It helps in maintaining the self-balancing property of the red-black tree.
Operations on a Red-Black Tree
Various operations that can be performed on a red-black tree are:
Rotating the subtrees in a Red-Black Tree
In rotation operation, the positions of the nodes of a subtree are interchanged.
Rotation operation is used for maintaining the properties of a red-black tree when they are violated by other operations such as insertion and deletion.
There are two types of rotations:
Left Rotate
In left-rotation, the arrangement of the nodes on the right is transformed into the arrangements on the left node.
Algorithm
- Let the initial tree be:
		
			Initial tree  - If y has a left subtree, assign x as the parent of the left subtree of y.
		
			Assign x as the parent of the left subtree of y  - If the parent of x is 
NULL, make y as the root of the tree. - Else if x is the left child of p, make y as the left child of p.
 - Else assign y as the right child of p.
		
			Change the parent of x to that of y  - Make y as the parent of x.
		
			Assign y as the parent of x.  
Right Rotate
In right-rotation, the arrangement of the nodes on the left is transformed into the arrangements on the right node.
- Let the initial tree be:
		
			Initial Tree  - If x has a right subtree, assign y as the parent of the right subtree of x.
		
			Assign y as the parent of the right subtree of x  - If the parent of y is 
NULL, make x as the root of the tree. - Else if y is the right child of its parent p, make x as the right child of p.
 - Else assign x as the left child of p.
		
			Assign the parent of y as the parent of x  - Make x as the parent of y.
		
			Assign x as the parent of y  
Left-Right and Right-Left Rotate
In left-right rotation, the arrangements are first shifted to the left and then to the right.
- Do left rotation on x-y.
		
			Left rotate x-y  - Do right rotation on y-z.
		
			Right rotate z-y  
In right-left rotation, the arrangements are first shifted to the right and then to the left.
- Do right rotation on x-y.
		
			Right rotate x-y  - Do left rotation on z-y.
		
			Left rotate z-y  
Inserting an element into a Red-Black Tree
While inserting a new node, the new node is always inserted as a RED node. After insertion of a new node, if the tree is violating the properties of the red-black tree then, we do the following operations.
- Recolor
 - Rotation
 
Algorithm to insert a node
Following steps are followed for inserting a new element into a red-black tree:
- Let y be the leaf (ie. 
NIL) and x be the root of the tree. - Check if the tree is empty (ie. whether x is 
NIL). If yes, insert newNode as a root node and color it black. - Else, repeat steps following steps until leaf (
NIL) is reached.- Compare newKey with rootKey.
 - If newKey is greater than rootKey, traverse through the right subtree.
 - Else traverse through the left subtree.
 
 - Assign the parent of the leaf as a parent of newNode.
 - If leafKey is greater than newKey, make newNode as rightChild.
 - Else, make newNode as leftChild.
 - Assign 
NULLto the left and rightChild of newNode. - Assign RED color to newNode.
 - Call InsertFix-algorithm to maintain the property of red-black tree if violated.
 
Why newly inserted nodes are always red in a red-black tree?
This is because inserting a red node does not violate the depth property of a red-black tree.
If you attach a red node to a red node, then the rule is violated but it is easier to fix this problem than the problem introduced by violating the depth property.
Algorithm to maintain red-black property after insertion
This algorithm is used for maintaining the property of a red-black tree if the insertion of a newNode violates this property.
- Do the following while the parent of newNode p is RED.
 - If p is the left child of grandParent gP of z, do the following.
Case-I:- If the color of the right child of gP of z is RED, set the color of both the children of gP as BLACK and the color of gP as RED.
 - Assign gP to newNode.
Case-II: - Else if newNode is the right child of p then, assign p to newNode.
 - Left-Rotate newNode.
Case-III: - Set color of p as BLACK and color of gP as RED.
 - Right-Rotate gP.
 
 - Else, do the following.
		
- If the color of the left child of gP of z is RED, set the color of both the children of gP as BLACK and the color of gP as RED.
 - Assign gP to newNode.
 - Else if newNode is the left child of p then, assign p to newNode and Right-Rotate newNode.
 - Set color of p as BLACK and color of gP as RED.
 - Left-Rotate gP.
 
 - Set the root of the tree as BLACK.
 
Deleting an element from a Red-Black Tree
This operation removes a node from the tree. After deleting a node, the red-black property is maintained again.
Algorithm to delete a node
- Save the color of nodeToBeDeleted in origrinalColor.
 - If the left child of nodeToBeDeleted is 
NULL- Assign the right child of nodeToBeDeleted to x.
 - Transplant nodeToBeDeleted with x.
 
 - Else if the right child of nodeToBeDeleted is 
NULL- Assign the left child of nodeToBeDeleted into x.
 - Transplant nodeToBeDeleted with x.
 
 - Else
		
- Assign the minimum of right subtree of noteToBeDeleted into y.
 - Save the color of y in originalColor.
 - Assign the rightChild of y into x.
 - If y is a child of nodeToBeDeleted, then set the parent of x as y.
 - Else, transplant y with rightChild of y.
 - Transplant nodeToBeDeleted with y.
 - Set the color of y with originalColor.
 
 - If the originalColor is BLACK, call DeleteFix(x).
 
Algorithm to maintain Red-Black property after deletion
This algorithm is implemented when a black node is deleted because it violates the black depth property of the red-black tree.
This violation is corrected by assuming that node x (which is occupying y's original position) has an extra black. This makes node x neither red nor black. It is either doubly black or black-and-red. This violates the red-black properties.
However, the color attribute of x is not changed rather the extra black is represented in x's pointing to the node.
The extra black can be removed if
- It reaches the root node.
 - If x points to a red-black node. In this case, x is colored black.
 - Suitable rotations and recoloring are performed.
 
The following algorithm retains the properties of a red-black tree.
- Do the following until the x is not the root of the tree and the color of x is BLACK
 - If x is the left child of its parent then,
		
- Assign w to the sibling of x.
 - If the right child of parent of x is RED,
Case-I:- Set the color of the right child of the parent of x as BLACK.
 - Set the color of the parent of x as RED.
 - Left-Rotate the parent of x.
 - Assign the rightChild of the parent of x to w.
 
 - If the color of both the right and the leftChild of w is BLACK,
Case-II:- Set the color of w as RED
 - Assign the parent of x to x.
 
 - Else if the color of the rightChild of w is BLACK
Case-III:- Set the color of the leftChild of w as BLACK
 - Set the color of w as RED
 - Right-Rotate w.
 - Assign the rightChild of the parent of x to w.
 
 - If any of the above cases do not occur, then do the following.
Case-IV:- Set the color of w as the color of the parent of x.
 - Set the color of the parent of x as BLACK.
 - Set the color of the right child of w as BLACK.
 - Left-Rotate the parent of x.
 - Set x as the root of the tree.
 
 
 - Else the same as above with right changed to left and vice versa.
 - Set the color of x as BLACK.
 
Please refer to insertion and deletion operations for more explanation with examples.
Python, Java and C/C++ Examples
# Implementing Red-Black Tree in Python
import sys
# Node creation
class Node():
    def __init__(self, item):
        self.item = item
        self.parent = None
        self.left = None
        self.right = None
        self.color = 1
class RedBlackTree():
    def __init__(self):
        self.TNULL = Node(0)
        self.TNULL.color = 0
        self.TNULL.left = None
        self.TNULL.right = None
        self.root = self.TNULL
    # Preorder
    def pre_order_helper(self, node):
        if node != TNULL:
            sys.stdout.write(node.item + " ")
            self.pre_order_helper(node.left)
            self.pre_order_helper(node.right)
    # Inorder
    def in_order_helper(self, node):
        if node != TNULL:
            self.in_order_helper(node.left)
            sys.stdout.write(node.item + " ")
            self.in_order_helper(node.right)
    # Postorder
    def post_order_helper(self, node):
        if node != TNULL:
            self.post_order_helper(node.left)
            self.post_order_helper(node.right)
            sys.stdout.write(node.item + " ")
    # Search the tree
    def search_tree_helper(self, node, key):
        if node == TNULL or key == node.item:
            return node
        if key < node.item:
            return self.search_tree_helper(node.left, key)
        return self.search_tree_helper(node.right, key)
    # Balancing the tree after deletion
    def delete_fix(self, x):
        while x != self.root and x.color == 0:
            if x == x.parent.left:
                s = x.parent.right
                if s.color == 1:
                    s.color = 0
                    x.parent.color = 1
                    self.left_rotate(x.parent)
                    s = x.parent.right
                if s.left.color == 0 and s.right.color == 0:
                    s.color = 1
                    x = x.parent
                else:
                    if s.right.color == 0:
                        s.left.color = 0
                        s.color = 1
                        self.right_rotate(s)
                        s = x.parent.right
                    s.color = x.parent.color
                    x.parent.color = 0
                    s.right.color = 0
                    self.left_rotate(x.parent)
                    x = self.root
            else:
                s = x.parent.left
                if s.color == 1:
                    s.color = 0
                    x.parent.color = 1
                    self.right_rotate(x.parent)
                    s = x.parent.left
                if s.right.color == 0 and s.right.color == 0:
                    s.color = 1
                    x = x.parent
                else:
                    if s.left.color == 0:
                        s.right.color = 0
                        s.color = 1
                        self.left_rotate(s)
                        s = x.parent.left
                    s.color = x.parent.color
                    x.parent.color = 0
                    s.left.color = 0
                    self.right_rotate(x.parent)
                    x = self.root
        x.color = 0
    def __rb_transplant(self, u, v):
        if u.parent == None:
            self.root = v
        elif u == u.parent.left:
            u.parent.left = v
        else:
            u.parent.right = v
        v.parent = u.parent
    # Node deletion
    def delete_node_helper(self, node, key):
        z = self.TNULL
        while node != self.TNULL:
            if node.item == key:
                z = node
            if node.item <= key:
                node = node.right
            else:
                node = node.left
        if z == self.TNULL:
            print("Cannot find key in the tree")
            return
        y = z
        y_original_color = y.color
        if z.left == self.TNULL:
            x = z.right
            self.__rb_transplant(z, z.right)
        elif (z.right == self.TNULL):
            x = z.left
            self.__rb_transplant(z, z.left)
        else:
            y = self.minimum(z.right)
            y_original_color = y.color
            x = y.right
            if y.parent == z:
                x.parent = y
            else:
                self.__rb_transplant(y, y.right)
                y.right = z.right
                y.right.parent = y
            self.__rb_transplant(z, y)
            y.left = z.left
            y.left.parent = y
            y.color = z.color
        if y_original_color == 0:
            self.delete_fix(x)
    # Balance the tree after insertion
    def fix_insert(self, k):
        while k.parent.color == 1:
            if k.parent == k.parent.parent.right:
                u = k.parent.parent.left
                if u.color == 1:
                    u.color = 0
                    k.parent.color = 0
                    k.parent.parent.color = 1
                    k = k.parent.parent
                else:
                    if k == k.parent.left:
                        k = k.parent
                        self.right_rotate(k)
                    k.parent.color = 0
                    k.parent.parent.color = 1
                    self.left_rotate(k.parent.parent)
            else:
                u = k.parent.parent.right
                if u.color == 1:
                    u.color = 0
                    k.parent.color = 0
                    k.parent.parent.color = 1
                    k = k.parent.parent
                else:
                    if k == k.parent.right:
                        k = k.parent
                        self.left_rotate(k)
                    k.parent.color = 0
                    k.parent.parent.color = 1
                    self.right_rotate(k.parent.parent)
            if k == self.root:
                break
        self.root.color = 0
    # Printing the tree
    def __print_helper(self, node, indent, last):
        if node != self.TNULL:
            sys.stdout.write(indent)
            if last:
                sys.stdout.write("R----")
                indent += "     "
            else:
                sys.stdout.write("L----")
                indent += "|    "
            s_color = "RED" if node.color == 1 else "BLACK"
            print(str(node.item) + "(" + s_color + ")")
            self.__print_helper(node.left, indent, False)
            self.__print_helper(node.right, indent, True)
    def preorder(self):
        self.pre_order_helper(self.root)
    def inorder(self):
        self.in_order_helper(self.root)
    def postorder(self):
        self.post_order_helper(self.root)
    def searchTree(self, k):
        return self.search_tree_helper(self.root, k)
    def minimum(self, node):
        while node.left != self.TNULL:
            node = node.left
        return node
    def maximum(self, node):
        while node.right != self.TNULL:
            node = node.right
        return node
    def successor(self, x):
        if x.right != self.TNULL:
            return self.minimum(x.right)
        y = x.parent
        while y != self.TNULL and x == y.right:
            x = y
            y = y.parent
        return y
    def predecessor(self,  x):
        if (x.left != self.TNULL):
            return self.maximum(x.left)
        y = x.parent
        while y != self.TNULL and x == y.left:
            x = y
            y = y.parent
        return y
    def left_rotate(self, x):
        y = x.right
        x.right = y.left
        if y.left != self.TNULL:
            y.left.parent = x
        y.parent = x.parent
        if x.parent == None:
            self.root = y
        elif x == x.parent.left:
            x.parent.left = y
        else:
            x.parent.right = y
        y.left = x
        x.parent = y
    def right_rotate(self, x):
        y = x.left
        x.left = y.right
        if y.right != self.TNULL:
            y.right.parent = x
        y.parent = x.parent
        if x.parent == None:
            self.root = y
        elif x == x.parent.right:
            x.parent.right = y
        else:
            x.parent.left = y
        y.right = x
        x.parent = y
    def insert(self, key):
        node = Node(key)
        node.parent = None
        node.item = key
        node.left = self.TNULL
        node.right = self.TNULL
        node.color = 1
        y = None
        x = self.root
        while x != self.TNULL:
            y = x
            if node.item < x.item:
                x = x.left
            else:
                x = x.right
        node.parent = y
        if y == None:
            self.root = node
        elif node.item < y.item:
            y.left = node
        else:
            y.right = node
        if node.parent == None:
            node.color = 0
            return
        if node.parent.parent == None:
            return
        self.fix_insert(node)
    def get_root(self):
        return self.root
    def delete_node(self, item):
        self.delete_node_helper(self.root, item)
    def print_tree(self):
        self.__print_helper(self.root, "", True)
if __name__ == "__main__":
    bst = RedBlackTree()
    bst.insert(55)
    bst.insert(40)
    bst.insert(65)
    bst.insert(60)
    bst.insert(75)
    bst.insert(57)
    bst.print_tree()
    print("\nAfter deleting an element")
    bst.delete_node(40)
    bst.print_tree()
	
// Implementing Red-Black Tree in Java
class Node {
  int data;
  Node parent;
  Node left;
  Node right;
  int color;
}
public class RedBlackTree {
  private Node root;
  private Node TNULL;
  // Preorder
  private void preOrderHelper(Node node) {
    if (node != TNULL) {
      System.out.print(node.data + " ");
      preOrderHelper(node.left);
      preOrderHelper(node.right);
    }
  }
  // Inorder
  private void inOrderHelper(Node node) {
    if (node != TNULL) {
      inOrderHelper(node.left);
      System.out.print(node.data + " ");
      inOrderHelper(node.right);
    }
  }
  // Post order
  private void postOrderHelper(Node node) {
    if (node != TNULL) {
      postOrderHelper(node.left);
      postOrderHelper(node.right);
      System.out.print(node.data + " ");
    }
  }
  // Search the tree
  private Node searchTreeHelper(Node node, int key) {
    if (node == TNULL || key == node.data) {
      return node;
    }
    if (key < node.data) {
      return searchTreeHelper(node.left, key);
    }
    return searchTreeHelper(node.right, key);
  }
  // Balance the tree after deletion of a node
  private void fixDelete(Node x) {
    Node s;
    while (x != root && x.color == 0) {
      if (x == x.parent.left) {
        s = x.parent.right;
        if (s.color == 1) {
          s.color = 0;
          x.parent.color = 1;
          leftRotate(x.parent);
          s = x.parent.right;
        }
        if (s.left.color == 0 && s.right.color == 0) {
          s.color = 1;
          x = x.parent;
        } else {
          if (s.right.color == 0) {
            s.left.color = 0;
            s.color = 1;
            rightRotate(s);
            s = x.parent.right;
          }
          s.color = x.parent.color;
          x.parent.color = 0;
          s.right.color = 0;
          leftRotate(x.parent);
          x = root;
        }
      } else {
        s = x.parent.left;
        if (s.color == 1) {
          s.color = 0;
          x.parent.color = 1;
          rightRotate(x.parent);
          s = x.parent.left;
        }
        if (s.right.color == 0 && s.right.color == 0) {
          s.color = 1;
          x = x.parent;
        } else {
          if (s.left.color == 0) {
            s.right.color = 0;
            s.color = 1;
            leftRotate(s);
            s = x.parent.left;
          }
          s.color = x.parent.color;
          x.parent.color = 0;
          s.left.color = 0;
          rightRotate(x.parent);
          x = root;
        }
      }
    }
    x.color = 0;
  }
  private void rbTransplant(Node u, Node v) {
    if (u.parent == null) {
      root = v;
    } else if (u == u.parent.left) {
      u.parent.left = v;
    } else {
      u.parent.right = v;
    }
    v.parent = u.parent;
  }
  private void deleteNodeHelper(Node node, int key) {
    Node z = TNULL;
    Node x, y;
    while (node != TNULL) {
      if (node.data == key) {
        z = node;
      }
      if (node.data <= key) {
        node = node.right;
      } else {
        node = node.left;
      }
    }
    if (z == TNULL) {
      System.out.println("Couldn't find key in the tree");
      return;
    }
    y = z;
    int yOriginalColor = y.color;
    if (z.left == TNULL) {
      x = z.right;
      rbTransplant(z, z.right);
    } else if (z.right == TNULL) {
      x = z.left;
      rbTransplant(z, z.left);
    } else {
      y = minimum(z.right);
      yOriginalColor = y.color;
      x = y.right;
      if (y.parent == z) {
        x.parent = y;
      } else {
        rbTransplant(y, y.right);
        y.right = z.right;
        y.right.parent = y;
      }
      rbTransplant(z, y);
      y.left = z.left;
      y.left.parent = y;
      y.color = z.color;
    }
    if (yOriginalColor == 0) {
      fixDelete(x);
    }
  }
  // Balance the node after insertion
  private void fixInsert(Node k) {
    Node u;
    while (k.parent.color == 1) {
      if (k.parent == k.parent.parent.right) {
        u = k.parent.parent.left;
        if (u.color == 1) {
          u.color = 0;
          k.parent.color = 0;
          k.parent.parent.color = 1;
          k = k.parent.parent;
        } else {
          if (k == k.parent.left) {
            k = k.parent;
            rightRotate(k);
          }
          k.parent.color = 0;
          k.parent.parent.color = 1;
          leftRotate(k.parent.parent);
        }
      } else {
        u = k.parent.parent.right;
        if (u.color == 1) {
          u.color = 0;
          k.parent.color = 0;
          k.parent.parent.color = 1;
          k = k.parent.parent;
        } else {
          if (k == k.parent.right) {
            k = k.parent;
            leftRotate(k);
          }
          k.parent.color = 0;
          k.parent.parent.color = 1;
          rightRotate(k.parent.parent);
        }
      }
      if (k == root) {
        break;
      }
    }
    root.color = 0;
  }
  private void printHelper(Node root, String indent, boolean last) {
    if (root != TNULL) {
      System.out.print(indent);
      if (last) {
        System.out.print("R----");
        indent += "   ";
      } else {
        System.out.print("L----");
        indent += "|  ";
      }
      String sColor = root.color == 1 ? "RED" : "BLACK";
      System.out.println(root.data + "(" + sColor + ")");
      printHelper(root.left, indent, false);
      printHelper(root.right, indent, true);
    }
  }
  public RedBlackTree() {
    TNULL = new Node();
    TNULL.color = 0;
    TNULL.left = null;
    TNULL.right = null;
    root = TNULL;
  }
  public void preorder() {
    preOrderHelper(this.root);
  }
  public void inorder() {
    inOrderHelper(this.root);
  }
  public void postorder() {
    postOrderHelper(this.root);
  }
  public Node searchTree(int k) {
    return searchTreeHelper(this.root, k);
  }
  public Node minimum(Node node) {
    while (node.left != TNULL) {
      node = node.left;
    }
    return node;
  }
  public Node maximum(Node node) {
    while (node.right != TNULL) {
      node = node.right;
    }
    return node;
  }
  public Node successor(Node x) {
    if (x.right != TNULL) {
      return minimum(x.right);
    }
    Node y = x.parent;
    while (y != TNULL && x == y.right) {
      x = y;
      y = y.parent;
    }
    return y;
  }
  public Node predecessor(Node x) {
    if (x.left != TNULL) {
      return maximum(x.left);
    }
    Node y = x.parent;
    while (y != TNULL && x == y.left) {
      x = y;
      y = y.parent;
    }
    return y;
  }
  public void leftRotate(Node x) {
    Node y = x.right;
    x.right = y.left;
    if (y.left != TNULL) {
      y.left.parent = x;
    }
    y.parent = x.parent;
    if (x.parent == null) {
      this.root = y;
    } else if (x == x.parent.left) {
      x.parent.left = y;
    } else {
      x.parent.right = y;
    }
    y.left = x;
    x.parent = y;
  }
  public void rightRotate(Node x) {
    Node y = x.left;
    x.left = y.right;
    if (y.right != TNULL) {
      y.right.parent = x;
    }
    y.parent = x.parent;
    if (x.parent == null) {
      this.root = y;
    } else if (x == x.parent.right) {
      x.parent.right = y;
    } else {
      x.parent.left = y;
    }
    y.right = x;
    x.parent = y;
  }
  public void insert(int key) {
    Node node = new Node();
    node.parent = null;
    node.data = key;
    node.left = TNULL;
    node.right = TNULL;
    node.color = 1;
    Node y = null;
    Node x = this.root;
    while (x != TNULL) {
      y = x;
      if (node.data < x.data) {
        x = x.left;
      } else {
        x = x.right;
      }
    }
    node.parent = y;
    if (y == null) {
      root = node;
    } else if (node.data < y.data) {
      y.left = node;
    } else {
      y.right = node;
    }
    if (node.parent == null) {
      node.color = 0;
      return;
    }
    if (node.parent.parent == null) {
      return;
    }
    fixInsert(node);
  }
  public Node getRoot() {
    return this.root;
  }
  public void deleteNode(int data) {
    deleteNodeHelper(this.root, data);
  }
  public void printTree() {
    printHelper(this.root, "", true);
  }
  public static void main(String[] args) {
    RedBlackTree bst = new RedBlackTree();
    bst.insert(55);
    bst.insert(40);
    bst.insert(65);
    bst.insert(60);
    bst.insert(75);
    bst.insert(57);
    bst.printTree();
    System.out.println("\nAfter deleting:");
    bst.deleteNode(40);
    bst.printTree();
  }
}
	
// Implementing Red-Black Tree in C
#include <stdio.h>
#include <stdlib.h>
enum nodeColor {
  RED,
  BLACK
};
struct rbNode {
  int data, color;
  struct rbNode *link[2];
};
struct rbNode *root = NULL;
// Create a red-black tree
struct rbNode *createNode(int data) {
  struct rbNode *newnode;
  newnode = (struct rbNode *)malloc(sizeof(struct rbNode));
  newnode->data = data;
  newnode->color = RED;
  newnode->link[0] = newnode->link[1] = NULL;
  return newnode;
}
// Insert an node
void insertion(int data) {
  struct rbNode *stack[98], *ptr, *newnode, *xPtr, *yPtr;
  int dir[98], ht = 0, index;
  ptr = root;
  if (!root) {
    root = createNode(data);
    return;
  }
  stack[ht] = root;
  dir[ht++] = 0;
  while (ptr != NULL) {
    if (ptr->data == data) {
      printf("Duplicates Not Allowed!!\n");
      return;
    }
    index = (data - ptr->data) > 0 ? 1 : 0;
    stack[ht] = ptr;
    ptr = ptr->link[index];
    dir[ht++] = index;
  }
  stack[ht - 1]->link[index] = newnode = createNode(data);
  while ((ht >= 3) && (stack[ht - 1]->color == RED)) {
    if (dir[ht - 2] == 0) {
      yPtr = stack[ht - 2]->link[1];
      if (yPtr != NULL && yPtr->color == RED) {
        stack[ht - 2]->color = RED;
        stack[ht - 1]->color = yPtr->color = BLACK;
        ht = ht - 2;
      } else {
        if (dir[ht - 1] == 0) {
          yPtr = stack[ht - 1];
        } else {
          xPtr = stack[ht - 1];
          yPtr = xPtr->link[1];
          xPtr->link[1] = yPtr->link[0];
          yPtr->link[0] = xPtr;
          stack[ht - 2]->link[0] = yPtr;
        }
        xPtr = stack[ht - 2];
        xPtr->color = RED;
        yPtr->color = BLACK;
        xPtr->link[0] = yPtr->link[1];
        yPtr->link[1] = xPtr;
        if (xPtr == root) {
          root = yPtr;
        } else {
          stack[ht - 3]->link[dir[ht - 3]] = yPtr;
        }
        break;
      }
    } else {
      yPtr = stack[ht - 2]->link[0];
      if ((yPtr != NULL) && (yPtr->color == RED)) {
        stack[ht - 2]->color = RED;
        stack[ht - 1]->color = yPtr->color = BLACK;
        ht = ht - 2;
      } else {
        if (dir[ht - 1] == 1) {
          yPtr = stack[ht - 1];
        } else {
          xPtr = stack[ht - 1];
          yPtr = xPtr->link[0];
          xPtr->link[0] = yPtr->link[1];
          yPtr->link[1] = xPtr;
          stack[ht - 2]->link[1] = yPtr;
        }
        xPtr = stack[ht - 2];
        yPtr->color = BLACK;
        xPtr->color = RED;
        xPtr->link[1] = yPtr->link[0];
        yPtr->link[0] = xPtr;
        if (xPtr == root) {
          root = yPtr;
        } else {
          stack[ht - 3]->link[dir[ht - 3]] = yPtr;
        }
        break;
      }
    }
  }
  root->color = BLACK;
}
// Delete a node
void deletion(int data) {
  struct rbNode *stack[98], *ptr, *xPtr, *yPtr;
  struct rbNode *pPtr, *qPtr, *rPtr;
  int dir[98], ht = 0, diff, i;
  enum nodeColor color;
  if (!root) {
    printf("Tree not available\n");
    return;
  }
  ptr = root;
  while (ptr != NULL) {
    if ((data - ptr->data) == 0)
      break;
    diff = (data - ptr->data) > 0 ? 1 : 0;
    stack[ht] = ptr;
    dir[ht++] = diff;
    ptr = ptr->link[diff];
  }
  if (ptr->link[1] == NULL) {
    if ((ptr == root) && (ptr->link[0] == NULL)) {
      free(ptr);
      root = NULL;
    } else if (ptr == root) {
      root = ptr->link[0];
      free(ptr);
    } else {
      stack[ht - 1]->link[dir[ht - 1]] = ptr->link[0];
    }
  } else {
    xPtr = ptr->link[1];
    if (xPtr->link[0] == NULL) {
      xPtr->link[0] = ptr->link[0];
      color = xPtr->color;
      xPtr->color = ptr->color;
      ptr->color = color;
      if (ptr == root) {
        root = xPtr;
      } else {
        stack[ht - 1]->link[dir[ht - 1]] = xPtr;
      }
      dir[ht] = 1;
      stack[ht++] = xPtr;
    } else {
      i = ht++;
      while (1) {
        dir[ht] = 0;
        stack[ht++] = xPtr;
        yPtr = xPtr->link[0];
        if (!yPtr->link[0])
          break;
        xPtr = yPtr;
      }
      dir[i] = 1;
      stack[i] = yPtr;
      if (i > 0)
        stack[i - 1]->link[dir[i - 1]] = yPtr;
      yPtr->link[0] = ptr->link[0];
      xPtr->link[0] = yPtr->link[1];
      yPtr->link[1] = ptr->link[1];
      if (ptr == root) {
        root = yPtr;
      }
      color = yPtr->color;
      yPtr->color = ptr->color;
      ptr->color = color;
    }
  }
  if (ht < 1)
    return;
  if (ptr->color == BLACK) {
    while (1) {
      pPtr = stack[ht - 1]->link[dir[ht - 1]];
      if (pPtr && pPtr->color == RED) {
        pPtr->color = BLACK;
        break;
      }
      if (ht < 2)
        break;
      if (dir[ht - 2] == 0) {
        rPtr = stack[ht - 1]->link[1];
        if (!rPtr)
          break;
        if (rPtr->color == RED) {
          stack[ht - 1]->color = RED;
          rPtr->color = BLACK;
          stack[ht - 1]->link[1] = rPtr->link[0];
          rPtr->link[0] = stack[ht - 1];
          if (stack[ht - 1] == root) {
            root = rPtr;
          } else {
            stack[ht - 2]->link[dir[ht - 2]] = rPtr;
          }
          dir[ht] = 0;
          stack[ht] = stack[ht - 1];
          stack[ht - 1] = rPtr;
          ht++;
          rPtr = stack[ht - 1]->link[1];
        }
        if ((!rPtr->link[0] || rPtr->link[0]->color == BLACK) &&
          (!rPtr->link[1] || rPtr->link[1]->color == BLACK)) {
          rPtr->color = RED;
        } else {
          if (!rPtr->link[1] || rPtr->link[1]->color == BLACK) {
            qPtr = rPtr->link[0];
            rPtr->color = RED;
            qPtr->color = BLACK;
            rPtr->link[0] = qPtr->link[1];
            qPtr->link[1] = rPtr;
            rPtr = stack[ht - 1]->link[1] = qPtr;
          }
          rPtr->color = stack[ht - 1]->color;
          stack[ht - 1]->color = BLACK;
          rPtr->link[1]->color = BLACK;
          stack[ht - 1]->link[1] = rPtr->link[0];
          rPtr->link[0] = stack[ht - 1];
          if (stack[ht - 1] == root) {
            root = rPtr;
          } else {
            stack[ht - 2]->link[dir[ht - 2]] = rPtr;
          }
          break;
        }
      } else {
        rPtr = stack[ht - 1]->link[0];
        if (!rPtr)
          break;
        if (rPtr->color == RED) {
          stack[ht - 1]->color = RED;
          rPtr->color = BLACK;
          stack[ht - 1]->link[0] = rPtr->link[1];
          rPtr->link[1] = stack[ht - 1];
          if (stack[ht - 1] == root) {
            root = rPtr;
          } else {
            stack[ht - 2]->link[dir[ht - 2]] = rPtr;
          }
          dir[ht] = 1;
          stack[ht] = stack[ht - 1];
          stack[ht - 1] = rPtr;
          ht++;
          rPtr = stack[ht - 1]->link[0];
        }
        if ((!rPtr->link[0] || rPtr->link[0]->color == BLACK) &&
          (!rPtr->link[1] || rPtr->link[1]->color == BLACK)) {
          rPtr->color = RED;
        } else {
          if (!rPtr->link[0] || rPtr->link[0]->color == BLACK) {
            qPtr = rPtr->link[1];
            rPtr->color = RED;
            qPtr->color = BLACK;
            rPtr->link[1] = qPtr->link[0];
            qPtr->link[0] = rPtr;
            rPtr = stack[ht - 1]->link[0] = qPtr;
          }
          rPtr->color = stack[ht - 1]->color;
          stack[ht - 1]->color = BLACK;
          rPtr->link[0]->color = BLACK;
          stack[ht - 1]->link[0] = rPtr->link[1];
          rPtr->link[1] = stack[ht - 1];
          if (stack[ht - 1] == root) {
            root = rPtr;
          } else {
            stack[ht - 2]->link[dir[ht - 2]] = rPtr;
          }
          break;
        }
      }
      ht--;
    }
  }
}
// Print the inorder traversal of the tree
void inorderTraversal(struct rbNode *node) {
  if (node) {
    inorderTraversal(node->link[0]);
    printf("%d  ", node->data);
    inorderTraversal(node->link[1]);
  }
  return;
}
// Driver code
int main() {
  int ch, data;
  while (1) {
    printf("1. Insertion\t2. Deletion\n");
    printf("3. Traverse\t4. Exit");
    printf("\nEnter your choice:");
    scanf("%d", &ch);
    switch (ch) {
      case 1:
        printf("Enter the element to insert:");
        scanf("%d", &data);
        insertion(data);
        break;
      case 2:
        printf("Enter the element to delete:");
        scanf("%d", &data);
        deletion(data);
        break;
      case 3:
        inorderTraversal(root);
        printf("\n");
        break;
      case 4:
        exit(0);
      default:
        printf("Not available\n");
        break;
    }
    printf("\n");
  }
  return 0;
}
	
// Implementing Red-Black Tree in C++
#include <iostream>
using namespace std;
struct Node {
  int data;
  Node *parent;
  Node *left;
  Node *right;
  int color;
};
typedef Node *NodePtr;
class RedBlackTree {
   private:
  NodePtr root;
  NodePtr TNULL;
  void initializeNULLNode(NodePtr node, NodePtr parent) {
    node->data = 0;
    node->parent = parent;
    node->left = nullptr;
    node->right = nullptr;
    node->color = 0;
  }
  // Preorder
  void preOrderHelper(NodePtr node) {
    if (node != TNULL) {
      cout << node->data << " ";
      preOrderHelper(node->left);
      preOrderHelper(node->right);
    }
  }
  // Inorder
  void inOrderHelper(NodePtr node) {
    if (node != TNULL) {
      inOrderHelper(node->left);
      cout << node->data << " ";
      inOrderHelper(node->right);
    }
  }
  // Post order
  void postOrderHelper(NodePtr node) {
    if (node != TNULL) {
      postOrderHelper(node->left);
      postOrderHelper(node->right);
      cout << node->data << " ";
    }
  }
  NodePtr searchTreeHelper(NodePtr node, int key) {
    if (node == TNULL || key == node->data) {
      return node;
    }
    if (key < node->data) {
      return searchTreeHelper(node->left, key);
    }
    return searchTreeHelper(node->right, key);
  }
  // For balancing the tree after deletion
  void deleteFix(NodePtr x) {
    NodePtr s;
    while (x != root && x->color == 0) {
      if (x == x->parent->left) {
        s = x->parent->right;
        if (s->color == 1) {
          s->color = 0;
          x->parent->color = 1;
          leftRotate(x->parent);
          s = x->parent->right;
        }
        if (s->left->color == 0 && s->right->color == 0) {
          s->color = 1;
          x = x->parent;
        } else {
          if (s->right->color == 0) {
            s->left->color = 0;
            s->color = 1;
            rightRotate(s);
            s = x->parent->right;
          }
          s->color = x->parent->color;
          x->parent->color = 0;
          s->right->color = 0;
          leftRotate(x->parent);
          x = root;
        }
      } else {
        s = x->parent->left;
        if (s->color == 1) {
          s->color = 0;
          x->parent->color = 1;
          rightRotate(x->parent);
          s = x->parent->left;
        }
        if (s->right->color == 0 && s->right->color == 0) {
          s->color = 1;
          x = x->parent;
        } else {
          if (s->left->color == 0) {
            s->right->color = 0;
            s->color = 1;
            leftRotate(s);
            s = x->parent->left;
          }
          s->color = x->parent->color;
          x->parent->color = 0;
          s->left->color = 0;
          rightRotate(x->parent);
          x = root;
        }
      }
    }
    x->color = 0;
  }
  void rbTransplant(NodePtr u, NodePtr v) {
    if (u->parent == nullptr) {
      root = v;
    } else if (u == u->parent->left) {
      u->parent->left = v;
    } else {
      u->parent->right = v;
    }
    v->parent = u->parent;
  }
  void deleteNodeHelper(NodePtr node, int key) {
    NodePtr z = TNULL;
    NodePtr x, y;
    while (node != TNULL) {
      if (node->data == key) {
        z = node;
      }
      if (node->data <= key) {
        node = node->right;
      } else {
        node = node->left;
      }
    }
    if (z == TNULL) {
      cout << "Key not found in the tree" << endl;
      return;
    }
    y = z;
    int y_original_color = y->color;
    if (z->left == TNULL) {
      x = z->right;
      rbTransplant(z, z->right);
    } else if (z->right == TNULL) {
      x = z->left;
      rbTransplant(z, z->left);
    } else {
      y = minimum(z->right);
      y_original_color = y->color;
      x = y->right;
      if (y->parent == z) {
        x->parent = y;
      } else {
        rbTransplant(y, y->right);
        y->right = z->right;
        y->right->parent = y;
      }
      rbTransplant(z, y);
      y->left = z->left;
      y->left->parent = y;
      y->color = z->color;
    }
    delete z;
    if (y_original_color == 0) {
      deleteFix(x);
    }
  }
  // For balancing the tree after insertion
  void insertFix(NodePtr k) {
    NodePtr u;
    while (k->parent->color == 1) {
      if (k->parent == k->parent->parent->right) {
        u = k->parent->parent->left;
        if (u->color == 1) {
          u->color = 0;
          k->parent->color = 0;
          k->parent->parent->color = 1;
          k = k->parent->parent;
        } else {
          if (k == k->parent->left) {
            k = k->parent;
            rightRotate(k);
          }
          k->parent->color = 0;
          k->parent->parent->color = 1;
          leftRotate(k->parent->parent);
        }
      } else {
        u = k->parent->parent->right;
        if (u->color == 1) {
          u->color = 0;
          k->parent->color = 0;
          k->parent->parent->color = 1;
          k = k->parent->parent;
        } else {
          if (k == k->parent->right) {
            k = k->parent;
            leftRotate(k);
          }
          k->parent->color = 0;
          k->parent->parent->color = 1;
          rightRotate(k->parent->parent);
        }
      }
      if (k == root) {
        break;
      }
    }
    root->color = 0;
  }
  void printHelper(NodePtr root, string indent, bool last) {
    if (root != TNULL) {
      cout << indent;
      if (last) {
        cout << "R----";
        indent += "   ";
      } else {
        cout << "L----";
        indent += "|  ";
      }
      string sColor = root->color ? "RED" : "BLACK";
      cout << root->data << "(" << sColor << ")" << endl;
      printHelper(root->left, indent, false);
      printHelper(root->right, indent, true);
    }
  }
   public:
  RedBlackTree() {
    TNULL = new Node;
    TNULL->color = 0;
    TNULL->left = nullptr;
    TNULL->right = nullptr;
    root = TNULL;
  }
  void preorder() {
    preOrderHelper(this->root);
  }
  void inorder() {
    inOrderHelper(this->root);
  }
  void postorder() {
    postOrderHelper(this->root);
  }
  NodePtr searchTree(int k) {
    return searchTreeHelper(this->root, k);
  }
  NodePtr minimum(NodePtr node) {
    while (node->left != TNULL) {
      node = node->left;
    }
    return node;
  }
  NodePtr maximum(NodePtr node) {
    while (node->right != TNULL) {
      node = node->right;
    }
    return node;
  }
  NodePtr successor(NodePtr x) {
    if (x->right != TNULL) {
      return minimum(x->right);
    }
    NodePtr y = x->parent;
    while (y != TNULL && x == y->right) {
      x = y;
      y = y->parent;
    }
    return y;
  }
  NodePtr predecessor(NodePtr x) {
    if (x->left != TNULL) {
      return maximum(x->left);
    }
    NodePtr y = x->parent;
    while (y != TNULL && x == y->left) {
      x = y;
      y = y->parent;
    }
    return y;
  }
  void leftRotate(NodePtr x) {
    NodePtr y = x->right;
    x->right = y->left;
    if (y->left != TNULL) {
      y->left->parent = x;
    }
    y->parent = x->parent;
    if (x->parent == nullptr) {
      this->root = y;
    } else if (x == x->parent->left) {
      x->parent->left = y;
    } else {
      x->parent->right = y;
    }
    y->left = x;
    x->parent = y;
  }
  void rightRotate(NodePtr x) {
    NodePtr y = x->left;
    x->left = y->right;
    if (y->right != TNULL) {
      y->right->parent = x;
    }
    y->parent = x->parent;
    if (x->parent == nullptr) {
      this->root = y;
    } else if (x == x->parent->right) {
      x->parent->right = y;
    } else {
      x->parent->left = y;
    }
    y->right = x;
    x->parent = y;
  }
  // Inserting a node
  void insert(int key) {
    NodePtr node = new Node;
    node->parent = nullptr;
    node->data = key;
    node->left = TNULL;
    node->right = TNULL;
    node->color = 1;
    NodePtr y = nullptr;
    NodePtr x = this->root;
    while (x != TNULL) {
      y = x;
      if (node->data < x->data) {
        x = x->left;
      } else {
        x = x->right;
      }
    }
    node->parent = y;
    if (y == nullptr) {
      root = node;
    } else if (node->data < y->data) {
      y->left = node;
    } else {
      y->right = node;
    }
    if (node->parent == nullptr) {
      node->color = 0;
      return;
    }
    if (node->parent->parent == nullptr) {
      return;
    }
    insertFix(node);
  }
  NodePtr getRoot() {
    return this->root;
  }
  void deleteNode(int data) {
    deleteNodeHelper(this->root, data);
  }
  void printTree() {
    if (root) {
      printHelper(this->root, "", true);
    }
  }
};
int main() {
  RedBlackTree bst;
  bst.insert(55);
  bst.insert(40);
  bst.insert(65);
  bst.insert(60);
  bst.insert(75);
  bst.insert(57);
  bst.printTree();
  cout << endl
     << "After deleting" << endl;
  bst.deleteNode(40);
  bst.printTree();
}
	Red-Black Tree Applications
- To implement finite maps
 - To implement Java packages: 
java.util.TreeMapandjava.util.TreeSet - To implement Standard Template Libraries (STL) in C++: multiset, map, multimap
 - In Linux Kernel